NOTES

- 20 J. M. BOBBITT, Thin Layer Chromatography, Reinhold Publishing Co., New York, 1963;
 E. STAHL (Editor), Thin Layer Chromatography, Academic Press, New York, 1965;
 K. RANDFRATH, Thin Layer Chromatography, Academic Press, New York, 1966.
- 21 I. BEKERSKY, Anal. Chem., 35 (1963) 261.
- 22 D. C. ABBOTT AND J. THOMSON, Chem. Ind., (1964) 481.
- 23 D. C. Abbott and J. Thomson, Analyst, 89 (1964) 613.
- 24 J. C. N. MA, J. Chromatog., 21 (1966) 151.
- 25 J. J. KABARA, G. C. KABARA AND R. S. WOJTALIK, J. Chromatog., 15 (1964) 267.
- 26 K. DOHMANN, Lab. Pract., (1965) 808.
- 27 M. R. SAHASRABUDHE, Chemist-Analyst, 52 (1963) 83.
- 28 E. C. FIEBERG AND H. SIEGEL, Anal. Chem., 30 (1958) 161.

Received June 5th, 1967

J. Chromatog., 31 (1967) 226-231

Fluorocarbons as solvents for thin-layer chromatographic analysis*

In a previous publication¹ we reported that fluorocarbons exhibit unusual properties when used as chromatographic solvents. For example, both a perfluoroalkane mixture and a mixture described as perfluorokerosene separated the sesquiterpene hydrocarbons (C15) from the monoterpene hydrocarbons (C10) on thin layers of Aluminum Oxide G. Under the conditions of the analysis the monoterpenes did not leave the origin. On the other hand, hydrocarbon solvents moved both the C10 and C15 terpenes but did not separate them. Consequently, the fluorocarbons appear more non-polar in their chromatographic behavior than the hydrocarbons.

To determine if other fluorocarbons exhibit this same behavior, samples of four additional aliphatic fluorocarbons and chlorofluorocarbons, and three aromatic

TABLE I

 R_F values of representative terpenes on silica gel G layers using aromatic solvents

Compound	Class of compound	R_F			
		Benzene	Fluoro- benzene	Penta- fluoro- benzene	Hexa- fluoro- benzene
p-Isopropenyltoluene	Aromatic hydrocarbon	0.98	0.98	0.92	0.94
Valencene	Sesquiterpene hydrocarbon	0.98	0.95	0.93	0.92
Thymyl methyl ether	Aromatic ether	0.92	0.93	0.86	0.83
Citronellal	Aldehyde	0.65	0.64	0.43	0.33
Linalyl acetate	Ester	0.50	0.53	0.37	0.30
Citral	Aldehyde	0.34	0.35	0.28	0.22
Linalool	Alcohol	0.26	0.23	0.14	0.12
α-Terpineol	Alcohol	0.15	0.13	0.10	0.07

^{*} Cooperative research by the Florida Citrus Commission and the Florida Citrus Experiment Station.

TABLE II

Terpene	Class of terpene	R_F			
		Perfluoro- methyl cyclohexane	Perfluoro-n- hexane	Hexane*	
Ylangene	Sesquiterpene	0.86	0.84	0,96	
Cedrene	Sesquiterpene	0.74	0.63	0.96	
β -Caryophyllene	Sesquiterpene	0.56	0.48	0.94	
y-Bisabolene	Sesquiterpene	0.44	0.26	0.93	
α-Humulene	Sesquiterpene	0.24	0.16	0.90	
d-Limonene	Monoterpene	0.00	0.00	0.93	
Terpinolene	Monoterpene	0,00	0.00	0.92	
y-Terpinene	Monoterpene	0,00	0.00	0.93	
Sabinene	Monoterpene	0.00	0.00	0.93	

 R_F values of representative terpene hydrocarbons on aluminum oxide G layers using FLUOROCARBON SOLVENTS

* Data reported in a previous publication.

fluorocarbons were studied. These were perfluoromethylcyclohexane, perfluoro-nhexane, 2,3-dichlorooctafluorobutane, 1,2-dichlorohexafluorocyclo-1-pentene, hexafluorobenzene, pentafluorobenzene, and fluorobenzene.

Experimental

Chromatoplates were 8 \times 8 or 2 \times 8 in. with layers of Silica Gel G or Aluminum Oxide G. Silica Gel was preferred for all solvents except perfluoromethylcyclohexane and perfluoro-n-hexane which gave best results with Aluminum Oxide. The detection spray was vanillin- H_2SO_4 as described earlier².

Perfluoromethylcyclohexane, hexafluorobenzene, and pentafluorobenzene were obtained from Imperial Smelting Corporation Ltd., Bristol, England, while perfluoro*n*-hexane, 2,3-dichlorooctafluorobutane, 1,2-dichlorohexafluorocyclo-1-pentene, and fluorobenzene were obtained from Peninsular ChemResearch, Inc., Gainesville, Florida.

Results and discussion

Fluorination of benzene produced compounds which were only slightly more chromatographically non-polar than benzene itself as shown in Table I. Although the R_F values using hexafluorobenzene were significantly different for oxygenated terpenes compared to those obtained using benzene alone, the chromatographic difference was slight when compared to that between hexane and perfluorohexane (Table II). In the latter case the completely fluorinated alkane separated the monoterpenes from the sesquiterpenes on Aluminum Oxide, whereas the hydrocarbon made no separation even on Silica Gel. Further study showed that substitution of even a small percentage of the fluorines by chlorines destroyed this property. Dichlorooctafluorobutane and dichlorohexafluorocyclopentene showed chromatographic properties more like those of the hydrocarbons than the perfluorocarbons (Table III).

In summary, complete fluorination of an aliphatic hydrocarbon produces a solvent whose chromatographic properties are greatly different from the non-fluorinated parent compound. However, substitution of chlorine for fluorine almost comple-

TABLE III

 $\mathcal{R}_{\mathcal{F}}$ values of representative terpenes on silica gel G layers using chlorofluorocarbon solvents

Compound	Class of	R_F		
	compound	2,3-Dichloro- octafluoro- butane	1,2-Dichloro- hexafluoro- cyclo-1-pentene	
<i>p</i> -Isopropenyltoluene	Aromatic	0.65	0.85	
paraopropenyitoritene	hydrocarbon	0.05	0.05	
Valencene	Sesquiterpene Hydrocarbon	0.78	0.90	
Thymyl methyl ether	Aromatic ether	0.33	0,62	
Citronellal	Aldehyde	0.04	0.15	
Linalyl acetate	Ester	0.03	0,09	
Citral	Aldehyde	0.00	0.05	
Linalool	Alcohol	0,00	0.03	
Cedrene	Sesquiterpene hydrocarbon	0.98		
β -Caryophyllene	Sesquiterpene hydrocarbon	0.70		
γ-Bisabolene	Sesquiterpene hydrocarbon	0.65		
α-Humulene	Sesquiterpene hydrocarbon	0.60		
d-Limonene	Monoterpene hydrocarbon	0.77		
Terpinolene	Monoterpene hydrocarbon	0.81		
γ-Terpinene	Monoterpene hydrocarbon	0.81		
Sabinene	Monoterpene hydrocarbon	0.81		

tely restores the original hydrocarbon properties. Complete fluorination of an aromatic hydrocarbon produces a solvent with chromatographic properties fairly similar to those of the parent compound.

Acknowledgements

Appreciation is expressed to Imperial Smelting Corporation Ltd., Bristol, England, who donated samples of perfluoromethylcyclohexane, hexafluorobenzene, and pentafluorobenzene, and to Peninsular ChemResearch, Inc., Gainesville, Fla., who donated the perfluoro-n-hexane.

Florida Citrus Commission, Lake Alfred, Fla. (U.S.A.) John A. Attaway

I J. A. ATTAWAY J. BARABAS AND R. W. WOLFORD, Anal. Chem., 37 (1965) 1289.

2 J. A. ATTAWAY AND R. W. WOLFORD, Proc. 5th Intern. Symp. Gas Chromatography, The Institute of Petroleum, London, 1964, pp. 170-179.

Received June 5th, 1967